Wednesday, June 8, 2022


An international group led by INAF researchers have confirmed that the gamma-ray burst GRB 200826A, which lasted less than two seconds – typical of short bursts – is associated with the explosion of a massive star, which is typical of long gamma-ray bursts. The study, involving also several universities and research institutes in Italy, is primarily based on data collected with the Large Binocular Telescope in Arizona, USA. The observations made the first ever use of adaptive optics to observe a supernova associated with a gamma-ray burst. 

Classifying gamma-ray bursts – rapid phenomena amongst the most energetic in the Universe –on the basis of their duration is the most commonly adopted approach by the astronomical community. However, recent observations have shown that this classification is not sufficient to uniquely reveal the nature of the progenitor that originated the burst. An example is GRB 200826A, a very peculiar gamma-ray burst: whereas its duration, about half a second, would classify it as a short burst, almost every other characteristic of the event was consistent with long bursts.

A new study, led by Andrea Rossi, a researcher at the Italian National Institute of Astrophysics (INAF), has shown that the gamma-ray burst GRB 200826A, first observed in 2020, is associated with a supernova, i.e. the explosion of a massive star, unlike other short gamma-ray bursts. The results, based on a one-year campaign involving two INAF facilities, the Large Binocular Telescope (LBT) located on Mount Graham in Arizona (USA) and the Galileo National Telescope (TNG) in La Palma, Canary Islands, Spain, as well as at the Maidanak Astronomical Observatory in Uzbekistan, have been published in The Astrophysical Journal.

Gamma-ray bursts (GRBs) are explosions that release jets of matter with speeds close to the speed of light. We observe them as extremely bright flashes at gamma-ray frequencies, so intense that they overwhelm any other high-energy source. GRBs are divided into long and short classes on the basis of their duration. In particular, short gamma-ray bursts last from a few tens of milliseconds up to 2 seconds, and are usually associated with the merger of two neutron stars or the merger of a neutron star with a black hole. Long bursts last longer than 2 seconds and are associated with the explosion of a star that has reached the end of its life and has a mass greater than 5-10 times that of the Sun.

"For the first time, adaptive optics were used to observe a supernova associated with a gamma-ray burst: thanks to these observations, we have shown that not just long gamma-ray bursts but also short GRBs can be the result of the collapse of a massive star”, explains Andrea Rossi, first author of the new study, “and therefore the duration of the gamma-ray burst is not an efficient discriminator for understanding the origin of GRBs”.

The SOUL (Single conjugate adaptive Optics Upgrade for LBTO) 2nd generation adaptive optics system, used for the infrared observations with the LUCI camera, was developed and built by INAF. The adaptive optics (AO) system acts in real time on the secondary mirror of the telescope to counteract the turbulence of the atmosphere, untwinkling the twinkling stars we see at night and so improving the resolution of several infrared instruments at the Large Binocular Telescope. Adaptive optics make it possible to reach a performance that could only be achieved by a space telescope.

This image depicts the galaxy in which the gamma-ray burst GRB 200826A and its supernova were observed, which is shown in the rectangle to the right of centre. At the centre of the image, the bright star which was monitored to correct for atmospheric perturbations with adaptive optics. The two inserts on the lower right show the galaxy in greater detail as observed in the infrared with the Large Binocular Telescope (LBT) using the adaptive optics of the SOUL system. The top insert shows the host galaxy whereas the supernova can be seen in the lower insert, where the contribution of the galaxy has been subtracted from a reference image taken about 5 months afterwards. This composite image combines observations obtained from LBT and Telescopio Nazionale Galileo (TNG) with archival data from the Gemini telescope.     Credits: A.Rossi (INAF); LBT; TNG; Gemini

“When combined with one of the 8 meter mirrors on the Large Binocular Telescope, adaptive optics allowed us to clearly measure the infrared light and, by repeating the observation after 4 months, we were able to watch the supernova fade and pinpoint exactly where in the very distant galaxy the event occurred. By comparison, this is like locating the position of LBT on Mount Graham from the Moon”, explains second author Barry Rothberg of the LBT Observatory. “This is also the first time AO has been used to precisely measure the host galaxy of a gamma ray burst. It shows the power of AO for studying the properties of these events and where they occur billions of light years further than has been done before”.

Due to the expansion of the Universe, all galaxies (and objects within them) appear to be receding from us. The result is that light emitted at a certain wavelength will appear to be redshifted, or shifted towards longer wavelengths, when it is observed on Earth. In the case of this gamma-ray burst, the radiation traveled for about 7 billion years before reaching us: this means that emission in optical wavelengths corresponds to an observation in the infrared. Thanks to the LBT observations with adaptive optics at infrared wavelengths, it is possible to observe faint and distant sources and then compare them with brighter, closer, and better known ones observed at optical wavelengths. “We found that the characteristics of the observed source are in agreement with other supernovae associated with gamma-ray bursts,” explains Rossi.

Supernovae associated with gamma-ray bursts are Type-Ic supernovae, originating from the collapse of the core of very massive stars that have lost much of their upper atmosphere. “The fact that we see these supernovae associated with short gamma-ray bursts means that perhaps we need to rethink some characteristics of these events”, comments Rossi. GRB 200826A is located in a very small galaxy that is forming new stars very rapidly. We know from decades of observations of other galaxies that when stars form very rapidly, they form many massive stars (at least 8-10x more massive than our Sun) which are short lived (tens of millions of years) and then explode in a supernova.  And – at least in this case – also emitting the short gamma-ray burst which we observed. “The results of our study have shown us the new potential of adaptive optics and, at the same time, pose new questions: How can a gamma-ray burst associated with a supernova be so short in time? We’ll try to figure it out in the near future", concludes Rossi.

For more information:

The article “The peculiar short-duration GRB 200826A and its supernova” by A. Rossi, B. Rothberg, E. Palazzi, D. A. Kann, P. D’Avanzo, L. Amati, S. Klose, A. Perego, E. Pian, C. Guidorzi, A. S. Pozanenko, S. Savaglio, G. Stratta, G. Agapito, S. Covino, F. Cusano, V. D’Elia, M. De Pasquale, M. Della Valle, O. Kuhn, L. Izzo, E. Loffredo, N. Masetti, A. Melandri, P. Y. Minaev, A. Nicuesa Guelbenzu, D. Paris, S. Paiano, C. Plantet, F. Rossi, R. Salvaterra, S. Schulze, C. Veillet and A. A. Volnova is published online in The Astrophysical Journal.



LBTO - Barry Rothberg, +1  520-305-9846,

INAF Press Office - Marco Galliani, +39 335 1778428,

No comments:

Post a Comment